A General Framework for Uncertainty Propagation Based on Point Estimate Methods

نویسنده

  • René Schenkendorf
چکیده

A general framework to approach the challenge of uncertainty propagation in model based prognostics is presented in this work. It is shown how the so-called Point Estimate Methods (PEMs) are ideally suited for this purpose because of the following reasons: 1) A credible propagation and representation of Gaussian (normally distributed) uncertainty can be done with a minimum of computational effort for non-linear applications. 2) Also non-Gaussian uncertainties can be propagated by evaluating suitable transfer functions inherently. 3) Confidence intervals of simulation results can be derived which do not have to be symmetrically distributed around the mean value by applying PEM in conjunction with the Cornish-Fisher expansion. 4) Moreover, the entire probability function of simulation results can be reconstructed efficiently by the proposed framework. The joint evaluation of PEM with the Polynomial Chaos expansion methodology is likely to provide good approximation results. Thus, non-Gaussian probability density functions can be derived as well. 5) The presented framework of uncertainty propagation is derivativefree, i.e. even non-smooth (non-differentiable) propagation problems can be tackled in principle. 6) Although the PEM is sample-based the overall method is deterministic. Computational results are reproducible which might be important to safety critical applications. Consequently, the proposed approach may play an essential part in contributing to render the prognostics and health management into a more credible process. A given study of a generic uncertainty propagation problem supports this issue illustratively. This work includes unpublished elements of the Ph.D.-Thesis (Schenkendorf, 2014).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commodity price uncertainty propagation in open-pit mine production planning by Latin hypercube sampling method

Production planning of an open-pit mine is a procedure during which the rock blocks are assigned to different production periods in a way that leads to the highest net present value (NPV) subject to some operational and technical constraints. This process becomes much more complicated by incorporation of the uncertainty existing in the input parameters. The commodity price uncertainty is among ...

متن کامل

Propagation of uncertainty in Bayesian diagnostic test interpretation.

OBJECTIVES Bayesian interpretation of diagnostic test results usually involves point estimates of the pretest probability and the likelihood ratio corresponding to the test result; however, it may be more appropriate in clinical situations to consider instead a range of possible values to express uncertainty in the estimates of these parameters. We thus sought to demonstrate how uncertainty in ...

متن کامل

A New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)

Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...

متن کامل

Probabilistic Segmentation Propagation from Uncertainty in Registration

In this paper we propose a novel approach for incorporating measures of spatial uncertainty which are derived from non-rigid registration, into propagated segmentation labels. In current approaches to segmentation via label propagation, a point-estimate of the registration parameters is used. However, this is limited by the registration accuracy achieved. In this work, we derive local measureme...

متن کامل

Polynomial-Chaos-Based Bayesian Approach for State and Parameter Estimations

Two new recursive approaches have been developed to provide accurate estimates for posterior moments of both parameters and system states while making use of the generalized polynomial-chaos framework for uncertainty propagation. The main idea of the generalized polynomial-chaos method is to expand random state and input parameter variables involved in a stochastic differential/difference equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014